Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
VARIATIONAL BOUND FINITE-ELEMENT METHODS FOR 3-DIMENSIONAL CREEPING POROUS-MEDIA AND SEDIMENTATION FLOWS
Autore:
PEDERCINI M; PATERA AT; CRUZ ME;
Indirizzi:
MIT,DEPT MECH ENGN,ROOM 3-266,77 MASSACHUSETTS AVE CAMBRIDGE MA 02139 MIT,DEPT MECH ENGN CAMBRIDGE MA 02139 UNIV FED RIO DE JANEIRO,COPPE,EE,DEPT MECH ENGN BR-21945970 RIO JANEIRO BRAZIL
Titolo Testata:
International journal for numerical methods in fluids
fascicolo: 2, volume: 26, anno: 1998,
pagine: 145 - 175
SICI:
0271-2091(1998)26:2<145:VBFMF3>2.0.ZU;2-C
Fonte:
ISI
Lingua:
ENG
Soggetto:
RIGID PARTICLES; SPHERES; SUSPENSIONS; PERMEABILITY; SIMULATIONS; FLUID;
Keywords:
EFFECTIVE PROPERTY; POROUS MEDIA; SEDIMENTATION; FINITE ELEMENT; STOKES FLOW; VARIATIONAL BOUNDS;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
CompuMath Citation Index
CompuMath Citation Index
Science Citation Index Expanded
Science Citation Index Expanded
Science Citation Index Expanded
Science Citation Index Expanded
Citazioni:
50
Recensione:
Indirizzi per estratti:
Citazione:
M. Pedercini et al., "VARIATIONAL BOUND FINITE-ELEMENT METHODS FOR 3-DIMENSIONAL CREEPING POROUS-MEDIA AND SEDIMENTATION FLOWS", International journal for numerical methods in fluids, 26(2), 1998, pp. 145-175

Abstract

We present an analytico-computational methodology for the prediction of the effective properties of two types of three-dimensional particulate Stokes flows: porous media and sedimentation hows. In particular, we determine the permeability and average settling rate of media that consist of non-colloidal monodisperse solid spherical particles immersed in a highly viscous Newtonian fluid. Our methodology recasts the original problem into three scale-decoupled subproblems: the macro-, meso- and microscale subproblems. In the macroscale analysis the appropriate effective property is used to calculate the bulk quantity of interest. The mesoscale problem provides this effective property through the finite element solution of the transport equations in a periodic cell containing many particles distributed according to a prescribed joint probability density function. Finally, the microscale analysis allows us to accommodate mesoscale realizations in which two or more inclusions are in very close proximity; this geometrical stiffness is alleviated by introducing simple domain modifications that relax. the mesh generation requirements while simultaneously yielding rigorous bounds for the effective property. Our methodology can treat random particle distributions as well as regular arrays; in the current paper we analyse only the latter. (C) 1998 John Wiley & Sons, Ltd.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 04/04/20 alle ore 11:54:19