Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
PREDICTING THE PROBABILITY OF TARGET DETECTION IN STATIC INFRARED ANDVISUAL SCENES USING THE FUZZY-LOGIC APPROACH
Autore:
MEITZLER TJ; SINGH H; AREFEH L; SOHN E; GERHART GR;
Indirizzi:
USA,TANK AUTOMOT & ARMAMENTS COMMAND,CTR RES DEV & ENGN WARREN MI 48387 WAYNE STATE UNIV,DEPT ELECT & COMP ENGN DETROIT MI 48202 COLL ENGN & TECHNOL,DEPT ELECT & COMP ENGN HEBRON ISRAEL
Titolo Testata:
Optical engineering
fascicolo: 1, volume: 37, anno: 1998,
pagine: 10 - 17
SICI:
0091-3286(1998)37:1<10:PTPOTD>2.0.ZU;2-G
Fonte:
ISI
Lingua:
ENG
Soggetto:
MODELING HUMAN SEARCH; ACQUISITION PERFORMANCE;
Keywords:
RECOGNITION TECHNIQUES; FUZZY LOGIC; TARGET ACQUISITION; SIGNAL DETECTION THEORY; VISION;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Science Citation Index Expanded
Citazioni:
36
Recensione:
Indirizzi per estratti:
Citazione:
T.J. Meitzler et al., "PREDICTING THE PROBABILITY OF TARGET DETECTION IN STATIC INFRARED ANDVISUAL SCENES USING THE FUZZY-LOGIC APPROACH", Optical engineering, 37(1), 1998, pp. 10-17

Abstract

The probability of detection (Pd) of targets in static infrared and visually cluttered scenes is computed using the fuzzy logic approach (FLA). The FLA is presented as a robust method for the computation and prediction of the Pd of targets in cluttered scenes. The Mamdani/Assilian and Sugeno neuro-fuzzy-based models are investigated. A large set of infrared (IR) imagery and a limited set of visual imagery are used to model the relationships between several input parameters: the contrast, camouflage condition, range, aspect, width, and experimental Pd. The fuzzy and neuro-fuzzy models gave predicted Pd values that had 0.98correlation to the experimental Pd's. The results obtained indicate the robustness of the fuzzy-based modeling techniques and the applicability of the FLA to those types of problems having to do with the modeling of human-in-the-loop target detection in any spectral regime. (C) 1988 Society of Photo-Optical Instrumentation Engineers. [S0091-3286(98)00101-9].

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 15/08/20 alle ore 01:44:12