Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
QUASI-CONVEX FUNCTIONS, SO(N) AND 2 ELASTIC WELLS
Autore:
ZHANG KW;
Indirizzi:
MACQUARIE UNIV,SCH MATH PHYS COMP & ELECT SYDNEY NSW 2109 AUSTRALIA
Titolo Testata:
Annales de l Institut Henri Poincare. Analyse non lineaire
fascicolo: 6, volume: 14, anno: 1997,
pagine: 759 - 785
SICI:
0294-1449(1997)14:6<759:QFSA2E>2.0.ZU;2-V
Fonte:
ISI
Lingua:
ENG
Soggetto:
STORED ENERGY FUNCTION; VARIATIONAL-PROBLEMS; OPTIMAL-DESIGN; RELAXATION; SEMICONTINUITY; MICROSTRUCTURE; ENVELOPE;
Tipo documento:
Article
Natura:
Periodico
Citazioni:
28
Recensione:
Indirizzi per estratti:
Citazione:
K.W. Zhang, "QUASI-CONVEX FUNCTIONS, SO(N) AND 2 ELASTIC WELLS", Annales de l Institut Henri Poincare. Analyse non lineaire, 14(6), 1997, pp. 759-785

Abstract

We use W-1,W-infinity approximations of minimizing sequences to studythe growth of some quasiconvex functions near their zero sets. We show that for SO(n), the quasiconvexification of the distance function dist(2)(.,SO(n)) can be bounded below by the distance function itself, In certain cases of the incompatible two elastic well structure, we establish a similar result. We also prove that for small Lipschitz perturbations of SO(n) and of the two well structure, the Young measure limits of gradients supported on these perturbed sets are Dirac masses.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 24/10/20 alle ore 14:12:31