Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Phosphorylation state of hsp27 and p38 MAPK during preconditioning and protein phosphatase inhibitor protection of rabbit cardiomyocytes
Autore:
Armstrong, SC; Delacey, M; Ganote, CE;
Indirizzi:
E,Tennessee State Univ, James H Quillen Coll Med, Dept Pathol, Johnson City E Tennessee State Univ Johnson City TN USA 37614 ept Pathol, Johnson City Vet Affairs Med Ctr, Johnson City, TN 37614 USA Vet Affairs Med Ctr Johnson City TN USA 37614 Johnson City, TN 37614 USA
Titolo Testata:
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY
fascicolo: 3, volume: 31, anno: 1999,
pagine: 555 - 567
SICI:
0022-2828(199903)31:3<555:PSOHAP>2.0.ZU;2-J
Fonte:
ISI
Lingua:
ENG
Soggetto:
HEAT-SHOCK PROTEIN-27; ADULT-RAT MYOCYTES; ENDOTHELIAL-CELLS; CALPHOSTIN-C; KINASE; STRESS; INJURY; ACTIVATION; INDUCTION; BLOCKADE;
Keywords:
calyculin A; isoelectric focusing; protein phosphorylation; heat shock protein;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Life Sciences
Citazioni:
41
Recensione:
Indirizzi per estratti:
Indirizzo: Armstrong, SC Eohnsonssee State Univ, James H Quillen Coll Med, Dept Pathol, POB 70568, J E Tennessee State Univ POB 70568 Johnson City TN USA 37614 J
Citazione:
S.C. Armstrong et al., "Phosphorylation state of hsp27 and p38 MAPK during preconditioning and protein phosphatase inhibitor protection of rabbit cardiomyocytes", J MOL CEL C, 31(3), 1999, pp. 555-567

Abstract

Small heat shock proteins (hsp) have been implicated in mediation of classic preconditioning in the rabbit. Hsp27 is a terminal substrate of the p38 MAPK cascade. One and 2D gel electrophoresis and immunoblotting of cell fractions was used to determine p38 MAPK and hsp27 phosphorylation Levels, respectively, during in vitro ischemia in control, calyculin A (Cal A)-treated(protein phosphatase inhibitor), SB203580-treated (p38MAPK inhibitor) and preconditioned (IPC) isolated adult rabbit cardiomyocytes. The dual phosphorylation of p38 MAPK was increased by early ischemia (30-60 min), after which there was a loss of total cytosolic p38 MAPK. The ischemic increase of p38 MAPK dual phosphorylation was enhanced by IPC. Cal A strongly activated dual phosphorylation of p38 MAPK in oxygenated cells and this was maintained into early ischemia. SB203580 inhibited the dual phosphorylation of p38 MAPK and attenuated the loss of total cytosolic p38 MAPK. In each protocol, ischemia translocated hsp27 from the cytosolic fraction to the cytoskeletalfraction at similar rates and extents. Hsp27 phosphorylation was quantitated as the fraction of diphosphorylated hsp27, based on IEF mobility shifts of hsp27 phosphorylation isoforms. In oxygenated control cells, cytosolic and cytoskeletal hsp27 was highly phosphorylated, After 90 min ischemia, cytoskeletal hsp77 was markedly dephosphorylated. Cal A slightly increased control cytoskeletal hsp27 phosphorylation. During ischemic incubation, Cal A blocked ischemic dephosphorylation. SB203580 accelerated ischemic hsp27 dephosphorylation and injury. IPC insignificantly decreased the initial rate of ischemic dephosphorylation of hsp27, but not the : later ischemia. Phosphorylation is regulated by both kinase and phosphatase extent of dt phosphorylation In activities. IPC protection was not correlated with a significantincrease in cytosolic or cytoskeletal hsp27 phosphorylation levels during prolonged (>60-90 min) ischemia. (C) 1999 Academic Press.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 06/04/20 alle ore 23:58:37