Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Neuronal activity in the primate supplementary motor area and the primary motor cortex in relation to spatio-temporal bimanual coordination
Autore:
Kermadi, I; Liu, Y; Tempini, A; Calciati, E; Rouiller, EM;
Indirizzi:
Univ Fribourg, Inst Physiol, CH-1700 Fribourg, Switzerland Univ Fribourg Fribourg Switzerland CH-1700 CH-1700 Fribourg, Switzerland
Titolo Testata:
SOMATOSENSORY AND MOTOR RESEARCH
fascicolo: 4, volume: 15, anno: 1998,
pagine: 287 - 308
SICI:
0899-0220(1998)15:4<287:NAITPS>2.0.ZU;2-V
Fonte:
ISI
Lingua:
ENG
Soggetto:
FOS-LIKE IMMUNOREACTIVITY; BILATERAL HAND MOVEMENT; MACAQUE MONKEY; FUNCTIONAL-ORGANIZATION; SEQUENTIAL MOVEMENTS; CEREBRAL-CORTEX; INFERIOR AREA-6; TASK; PREMOTOR; REPRESENTATIONS;
Keywords:
single unit; interlimb coordination; monkey; motor control; SIMA; M1;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Life Sciences
Citazioni:
58
Recensione:
Indirizzi per estratti:
Indirizzo: Rouiller, EM Univ Fribourg, Inst Physiol, Rue Musee 5, CH-1700 Fribourg, Switzerland Univ Fribourg Rue Musee 5 Fribourg Switzerland CH-1700 rland
Citazione:
I. Kermadi et al., "Neuronal activity in the primate supplementary motor area and the primary motor cortex in relation to spatio-temporal bimanual coordination", SOMAT MOT R, 15(4), 1998, pp. 287-308

Abstract

Single neuronal activity was recorded from the supplementary motor area (SMA-proper and pre-SMA) and primary motor cortex (M1) in two Macaca fascicularis trained to perform a delayed conditional sequence of coordinated bimanual pull and grasp movements. The behavioural paradigm was designed to distinguish neuronal activity associated with bimanual coordination from that related to a comparable motor sequence but executed unimanually (left or right arm only). The bimanual and unimanual trials were instructed in a randomorder by a visual cue. Following the cue, there was a waiting period untilpresentation of a "go-signal", signalling the monkey to perform the instructed movement. A total of 143 task-related neurons were recorded from the SMA (SMA-proper, 62; pre-SMA, 81). Most SMA units (87%) were active in both unimanual contralateral and unimanual ipsilateral trials (bilateral neurons), whereas 9% of units were active only in unimanual contralateral trials and 3% were active only in unimanual ipsilateral trials. Forty-eight per cent of SMA task-related units were classified as bimanual, defined as neuronsin which the activity observed in bimanual trials could not be predicted from that associated with unimanual trials when comparing the same events related to the same arm. For direct comparison, 527 neurons were recorded from M1 in the same monkeys performing the same tasks. The comparison showed that M1 contains significantly less bilateral neurons (75%) than the SMA, whereas the reverse was observed for contralateral neurons (22% in Mi). The proportion of M1 bimanual cells (53%) was not statistically different from that observed in the SMA. The results suggest that both the SMA and M1 may contribute to the control of sequential bimanual coordinated movements. Interlimb coordination may then take place in a distributed network including at least the SMA and M1, but the contribution of other cortical and subcortical areas such as cingulate motor cortex and basal ganglia remains to be investigated.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 04/12/20 alle ore 16:44:57