Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
LARGE TIME BEHAVIOR IN INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
Autore:
CARPIO A;
Indirizzi:
UNIV COMPLUTENSE MADRID,DEPT MATEMAT APLICADA E-28040 MADRID SPAIN
Titolo Testata:
Zeitschrift fur angewandte Mathematik und Mechanik
, volume: 76, anno: 1996, supplemento:, 2
pagine: 495 - 496
SICI:
0044-2267(1996)76:<495:LTBIIN>2.0.ZU;2-I
Fonte:
ISI
Lingua:
ENG
Soggetto:
WEAK SOLUTIONS; L2 DECAY; RN;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
CompuMath Citation Index
CompuMath Citation Index
Science Citation Index Expanded
Science Citation Index Expanded
Citazioni:
7
Recensione:
Indirizzi per estratti:
Citazione:
A. Carpio, "LARGE TIME BEHAVIOR IN INCOMPRESSIBLE NAVIER-STOKES EQUATIONS", Zeitschrift fur angewandte Mathematik und Mechanik, 76, 1996, pp. 495-496

Abstract

We give a development up to the second order of strong solutions u ofincompressible Navier-Stokes equations in R(n), n greater than or equal to 2 for several classes of initial data u(0). The first term is the solution h(t) = G(t) u(0) of the heat equation taking the same initial data. A better aproximation is provided by the divergence free solutions with initial data u(0) of v(t) - Delta(v) = -h(i) partial derivative(i)h - partial derivative(j) del E(n) h(i) partial derivative(i)h(j) in R(+) x R(n) where E(n) stands for the fundamental solution of-Delta in R(n). For initial data satisfying some integrability conditions(and small enough, if n greater than or equal to 3) we obtain, for1 less than or equal to q less than or equal to infinity, [GRAPHICS] when t --> infinity, where delta(t) is equal to log t if n = 2 and to a constant if n greater than or equal to 3 and R(t) is a corrector term that we compute explicitely.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 04/12/20 alle ore 22:44:12