Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
LINEAR DIMENSION REDUCTION OF SEQUENCES OF MEDICAL IMAGES .3. FACTOR-ANALYSIS IN SIGNAL SPACE
Autore:
HERMANSEN F; LAMMERTSMA AA;
Indirizzi:
HAMMERSMITH HOSP,ROYAL POSTGRAD MED SCH,MRC,CLIN SCI CTR,PET METHODOL& CARDIOL GRP LONDON W12 0HS ENGLAND
Titolo Testata:
Physics in medicine and biology
fascicolo: 8, volume: 41, anno: 1996,
pagine: 1469 - 1481
SICI:
0031-9155(1996)41:8<1469:LDROSO>2.0.ZU;2-M
Fonte:
ISI
Lingua:
ENG
Soggetto:
DYNAMIC RADIONUCLIDE;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Science Citation Index Expanded
Citazioni:
17
Recensione:
Indirizzi per estratti:
Citazione:
F. Hermansen e A.A. Lammertsma, "LINEAR DIMENSION REDUCTION OF SEQUENCES OF MEDICAL IMAGES .3. FACTOR-ANALYSIS IN SIGNAL SPACE", Physics in medicine and biology, 41(8), 1996, pp. 1469-1481

Abstract

A method is presented for improving the precision of factor analysis by utilizing physiological information. The first step is an optimal linear dimension reduction, whereby the data are projected onto a low-dimensional signal space. Then, principal component analysis is performed in the signal space rather than in the entire data space. This improves the precision of the principal components. Unlike ordinary principal component analysis, the present method is not degraded when the time intervals are subdivided, provided that the signal space is correct. Alternatively, but with identical results, the covariance matrix canbe calculated from the whole data space. The covariance matrix is then transformed and principal component analysis is performed in either a low-rank matrix or a low-dimensional submatrix instead of in the whole covariance matrix. Factor analysis using the intersection method with a theory space may be improved by employing the present method. In simulations based on a [C-11]flumazenil study with 27 frames, the proposed method required only 58 per cent of the radioactivity to produce the same precision as the intersection method and only 27 per cent when compared to ordinary principal component analysis.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 28/10/20 alle ore 18:40:48