Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
LANG AND KOBAYASHI PHASE EQUATION
Autore:
ALSING PM; KOVANIS V; GAVRIELIDES A; ERNEUX T;
Indirizzi:
USAF,PHILLIPS LAB,NONLINEAR OPT CTR,3350 ABERDEEN AVE SE KIRTLAND AFBNM 87117 FREE UNIV BRUSSELS B-1050 BRUSSELS BELGIUM UNIV NEW MEXICO,DEPT MATH & STAT ALBUQUERQUE NM 87131
Titolo Testata:
Physical review. A
fascicolo: 6, volume: 53, anno: 1996,
pagine: 4429 - 4434
SICI:
1050-2947(1996)53:6<4429:LAKPE>2.0.ZU;2-W
Fonte:
ISI
Lingua:
ENG
Soggetto:
WEAK OPTICAL FEEDBACK; EXTERNAL CAVITY LASER; LIMIT-CYCLE BEHAVIOR; SEMICONDUCTOR-LASERS; DIODES; CHAOS; ROUTE;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Science Citation Index Expanded
Citazioni:
21
Recensione:
Indirizzi per estratti:
Citazione:
P.M. Alsing et al., "LANG AND KOBAYASHI PHASE EQUATION", Physical review. A, 53(6), 1996, pp. 4429-4434

Abstract

Lang and Kobayashi equations for a semiconductor laser subject to optical feedback are investigated by using asymptotic methods. Our analysis is based on the values of two key parameters, namely, the small ratio of the photon and carrier lifetimes and the relatively large value of the linewidth enhancement factor. For low feedback levels, we derive a third-order delay-differential equation for the phase of the laserfield. We then show analytically and numerically that this equation admits coexisting branches of stable periodic solutions that appear at different and almost constant amplitudes. These amplitudes are proportional to the roots of the Bessel function J(1)(x). The bifurcation diagram of the phase equation is in good agreement with the numerical bifurcation diagram of the original Lang and Kobayashi equations. We interpret the onset of the periodic solutions as the emergence of a new set of external cavity modes with a more complicated time dependence.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 22/09/20 alle ore 17:25:43