Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
OPTIMAL ONE-STAGE AND 2-STAGE SCHEMES FOR STEADY-STATE SOLUTIONS OF HYPERBOLIC-EQUATIONS
Autore:
CHIU C;
Indirizzi:
UNIV MICHIGAN,DEPT MATH ANN ARBOR MI 48109
Titolo Testata:
Applied numerical mathematics
fascicolo: 6, volume: 11, anno: 1993,
pagine: 475 - 496
SICI:
0168-9274(1993)11:6<475:OOA2SF>2.0.ZU;2-3
Fonte:
ISI
Lingua:
ENG
Soggetto:
LINEAR-SYSTEMS;
Keywords:
OPTIMAL M-STAGE RUNGE-KUTTA METHOD; STEADY STATE SOLUTION OF HYPERBOLIC PDE; SPECTRAL METHODS; NONSYMMETRIC LINEAR SYSTEM;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
CompuMath Citation Index
Science Citation Index Expanded
Citazioni:
19
Recensione:
Indirizzi per estratti:
Citazione:
C. Chiu, "OPTIMAL ONE-STAGE AND 2-STAGE SCHEMES FOR STEADY-STATE SOLUTIONS OF HYPERBOLIC-EQUATIONS", Applied numerical mathematics, 11(6), 1993, pp. 475-496

Abstract

In this paper, we consider finding steady state approximations to hyperbolic equations by solving the related ODE systems using spatial discretization. An optimal one-stage scheme is derived based on the particular distribution pattern of eigenvalues of the spatial discretization matrix. An optimal two-stage method is then designed based on a geometric closure of the eigenvalues and the results from the one-stage method. The applications of these methods include but are not limited tosolving nonsymmetric linear systems.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 04/12/20 alle ore 20:04:15