Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
EXISTENCE OF BACKWARD GLOBAL-SOLUTIONS TO NONLINEAR DISSIPATIVE WAVE-EQUATIONS
Autore:
CARPIO A;
Indirizzi:
UNIV COMPLUTENSE MADRID,DEPT MATEMAT APLICADA E-28040 MADRID SPAIN
Titolo Testata:
Comptes rendus de l'Academie des sciences. Serie 1, Mathematique
fascicolo: 8, volume: 316, anno: 1993,
pagine: 803 - 808
SICI:
0764-4442(1993)316:8<803:EOBGTN>2.0.ZU;2-T
Fonte:
ISI
Lingua:
FRE
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
CompuMath Citation Index
Science Citation Index Expanded
Citazioni:
9
Recensione:
Indirizzi per estratti:
Citazione:
A. Carpio, "EXISTENCE OF BACKWARD GLOBAL-SOLUTIONS TO NONLINEAR DISSIPATIVE WAVE-EQUATIONS", Comptes rendus de l'Academie des sciences. Serie 1, Mathematique, 316(8), 1993, pp. 803-808

Abstract

Let OMEGA be a bounded smooth domain of R(n). We prove existence of global solutions, i. e. solutions defined for all t is-an-element-of R,for dissipative wave equations of the form: u''-DELTAu+\u'\p-1 u'=0 in (- infinity, infinity) x OMEGA with Dirichlet homogeneous boundary conditions, where 1 < p < infinity if n less-than-or-equal-to 2 or 1 < p less-than-or-equal-to (n + 2)/(n - 2) if n > 2. More precisely, for every solution psi (with constant sign if 1 < p < 2) of an elliptic problem we prove the existence of a solution growing like \t\(p/(p-1)) when t --> - infinity. When OMEGA is unbounded the same existence result holds for p greater-than-or-equal-to 2.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 04/12/20 alle ore 22:19:26