Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
N-VECTOR SPIN MODELS ON THE SIMPLE-CUBIC AND THE BODY-CENTERED-CUBIC LATTICES - A STUDY OF THE CRITICAL-BEHAVIOR OF THE SUSCEPTIBILITY AND OF THE CORRELATION LENGTH BY HIGH-TEMPERATURE SERIES EXTENDED TO ORDERBETA(21)
Autore:
BUTERA P; COMI M;
Indirizzi:
UNIV MILAN,DIPARTIMENTO FIS,IST NAZL FIS NUCL,VIA CELORIA 16 I-20133 MILAN ITALY
Titolo Testata:
Physical review. B, Condensed matter
fascicolo: 13, volume: 56, anno: 1997,
pagine: 8212 - 8240
SICI:
0163-1829(1997)56:13<8212:NSMOTS>2.0.ZU;2-T
Fonte:
ISI
Lingua:
ENG
Soggetto:
SELF-AVOIDING WALKS; PARTIAL-DIFFERENTIAL APPROXIMANTS; CLASSICAL HEISENBERG-MODEL; 3-DIMENSIONAL ISING-MODELS; CALLAN-SYMANZIK EQUATION; RESOLUTION MONTE-CARLO; 3D XY-MODEL; CRITICAL EXPONENTS; RENORMALIZATION-GROUP; FIELD-THEORY;
Tipo documento:
Review
Natura:
Periodico
Settore Disciplinare:
Science Citation Index Expanded
Citazioni:
111
Recensione:
Indirizzi per estratti:
Citazione:
P. Butera e M. Comi, "N-VECTOR SPIN MODELS ON THE SIMPLE-CUBIC AND THE BODY-CENTERED-CUBIC LATTICES - A STUDY OF THE CRITICAL-BEHAVIOR OF THE SUSCEPTIBILITY AND OF THE CORRELATION LENGTH BY HIGH-TEMPERATURE SERIES EXTENDED TO ORDERBETA(21)", Physical review. B, Condensed matter, 56(13), 1997, pp. 8212-8240

Abstract

High-temperature expansions for the free energy, the susceptibility, and the second correlation moment of the classical N-vector model [also known as the O(N) symmetric classical spin-Heisenberg model or as the lattice O(N) nonlinear sigma model] on the simple-cubic and the body-centered-cubic lattices are extended to order beta(21) for arbitrary N. The series for the second field derivative of the susceptibility isextended to order beta(17). We report here on the analysis of the computed series for the susceptibility and the (second moment) correlation length which yields updated estimates of the critical parameters forvarious values of the spin dimensionality N, including N = 0 (the self-avoiding walk model), N = 1 (the Ising spin-1/2 model), N = 2 (the XY model), and N = 3 (the classical Heisenberg model). For all values of N we confirm a good agreement with the present renormalization-groupestimates. A study of the series for the other observables will appear in a forthcoming paper.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 25/11/20 alle ore 06:51:07